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LETTER TO THE EDITOR 

Fractal measures of mean first passage time in the presence of 
Sinai disorder 

K P N MhThyt, S Rajasews  and K W Kehri 
$ Theoretical Stndies Section, Materials Science Division, lndira Gmdhi centre for Atomic 
Research, Kalpakkn, 603 102 Tamil Nadu, India 
t lnstibt fiir Festktirperfonchung des Forschungszenhums, JUlich. Posffach 1913, D-52425 
Jlilich. Federal Republic of Germany 

W v e d  10 November 1993 

A b s h c L  We consider mean first passage time (m) of d o m  walks from one end to the other 
of 3 segmea of a Sinai I&. with a reficcting left boundvy and an absorbing righl boundary. 
Random fields "e located at each sile and can acccp values f I 6 with equal probability. 
Wc investigate the nature of the dis&ibudon of .W over Sinai &Ids, employing m u l m  
fordsms.  We calculate the fractal dimension D(0) and find it varies nearly linearly with 6 ,  

the men@ of Sinai disorder. We then study the scaling behaviour of the pardtion function. To 
this end we make a d i n g  myL0 -Qd fit it to our cxau mulls on finite lanices. which yields 
the scaling exponents r(q). We rcpon results on the scaling exponents for various values of the 
dkordcr parameter. 

Systems with quenched-in disorder arise in a variety of contexts in condensed matter physics 
[I]. The transport pmpehes of these systems exhibit interesting anomalous features which 
are not usually tractable by analytical means. Hence one focuses attention on simple 
prototypes and investigates the transport properties employing random walk models. 

The Sinai model [2] proposed in 1982 is a classic example. It consists of a particle 
executing a random walk on a onedimensional lattice. At each lattice site i, the right and 
left jump probabilities are denoted by pi and 1 - pi respectively. The set ( p i ]  constitutes 
identically distributed independent random variables with a common distribution prescribed 
in such a way that the logarithm of the quantity ,!l = (1 - p ) / p  has zero mean and finite 
variance, vz. The mean-square displacement of the particle increases ultra-slowly as the 
fourth power of logarithm of time. This anomalous behaviour is not dificult to understand, 
if we realise that over a typical distance N, a potential banier proportional to f i  develops 
by virtue of the addition of random biases with zero mean. To overcome such an Arrhenius 
barrier, it requires typically a time of the order of exp[fi], from which it immediately 
follows that the mean quare displacement should go like [ln(t)l [4]. It should be noted, 
however that the anomalous diffusion characterizes the typical behaviour. 

In the context of random walk models, there is an alternate way of investigating the 
transport properties of systems which, many-a-time prove simpler. It consists of calculating 
the time taken by the particle to go from one end to the other, of a finite segment of the 
lattice. The advantages of such first passage time (FpT) formulations [3-81 for studying 

5 Present address: Oepartment of physics, Manonmaniyam Sundaranar University, Tiie lve l i .  627 002. Tamil 
Nadu, India. 
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transport properties of systems with quenched-in disorder arise from the fact that the lattice 
is finite and hence different disorder configurations can be enumerated exhaustively and 
exactly. 

The FPT formulation is usually made as follows. We consider random walks on a 
segment of a one-diinsional lattice, with a reflecting left boundary at site i = 0, and an 
absorbing right boundary at site i = N .  The random walk starts at 0 and jumps to site 1 
with probability po or stays at the 0 itself with probability 1 - PO. Eventually the random 
walk gets absorbed at N .  Let t0.N denote the number of steps the random walk takes to 
reach the absorbing site, starting from site 0. The random variable  to,^ is called the PPT. 
We consider a simple dichotomic model of the Sinai disorder. We prescribe p to take only 
two values, $ f E with equal probability, where 0 c E c 1/2 is a parameter that measures 
the strength of the disorder. It is easily verified that the above prescription obeys the Sinai 
conditions. Let t denote the mean first passage time (MPFT). In other words t = ( f o , ~ ) ,  
where the angular brackets denote averaging over all possible random walks on a given 
realization of the random lattice. It has been shown [3-51 that the MFFT averaged over 
Sinai disorder diverges with system size as exp[yN] where y = ln[(p)], while the typical 
value of MFFT diverges comparatively slowly as exp[ufi]. This implies that fluctuations 
of MFpT increase when system size N increases. The central l i t  theorem or its equivalent 
is not applicable for such problems. In fact it has been shown that the distribution p ( t )  of 
the MFFT over Sinai disorder has a l / t  tail [6-7]. In order to obtain a further and better 
characterization of diffusion on a Sinai lattice, we have studied the mnltifractal measures 
of the MFFT as described below. 

Our starting point is the analytical expression derived for the M F ~ T  for a given realization 
of the random lattice. Details of the derivation can be found elsewhere [4], and we give 
below the expression for t, explicitly in terms of PO, PI. . . . P N - I .  

Formal expressions for mean and typical values of t can be obtained [4-5] from this 
expression. In this letter, however, we shall be interested in the multifractal characterization 
of the distribution p( t ) .  

For a chain of size N and the dichotomic model of Sinai disorder, there are Z N  
realizations of the random lattice possible. We enumerate exactly all the realizations 
and calculate the MFFT explicitly for each of them employing (1). Thus we get a set 
{ t i ;  i = 1, 2N} of values of MFPT. For convenience, we rescale ti by defining, 

where tm and t d  denote the maximum and minimum of the values t respectively. ($1 
can then be considered as dots on the real line segment (0,l). We investigate the nature of 
the density distribution of these dots employing multifrad formalisms [9, IO]. 

We divide the unit line segment into a set of 2N non-overlapping intervals each of size, 
say.Z(= 2-N).  We define the partition function as, 

3P 
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Figure 1. In[Z(q. N)] versus InIZ-”] for W values of q. (a) q = -2: (b) q = 0: and (c) 
q = 2 .  
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Figure 2 Vf&don of the fradal dimension with the disorder &erer E.  The data were 
obtained for N E 20. 

where pi(1) is the fractional numbcr of dots in the ith interval and the sum runs over 
non-empty intends only. we make the scaling ansatz that z(4.Z) - Lr(9). The scaling 
exponents s(q) are then given by 

In this expression the l i t  1 + 0 is obtained by letting the system size N 4 CO. The 
generalized Renyi dimensions are then given by D(q) = t(4)/(4 - 1). 

We carried out calculations with the lattice size N varying from 1 to 22. Figure 1 depicts 
the variation of In[Z(q, N)] versus -N ln(2) for representative v a l w  of q = -2.0, and 
+2, with c= 0.25. The linearity of the curve for large N establishes the scaling ansatz. 
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Figure 3. The scaling exponent r versus q. for Umc values of ule disorder parameter E .  (a) 
G = 0.01; (b) E = 025. and (c) E = 0.49. Note the shiW scales of the ordinates; curves (a) 
and (b) refer to the right scale, curve (c) to the leR scale. 
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Figure4. The D(q)spehaofthedisbibutionofMFprforthreevaluesofthedisorderparameter. 
(a) E = 0.01, (b) E = O Z .  and (c) 6 = 0.49. 

Figure 2 depicts the fractal dimension given by D(q = 0). calculated for various values of 
E, in the range 0.01-0.49. We note that if E = 0.5, then ti = 03 for all i ,  except the one 
(say i = U) for which t ,  = N, since for such a lattice segment the right jump probabilities 
at all the sites are unity. Thus for 6 + 0.5, we have D(0) --f 0.0. On the other hand if 
E = 0, there is no disorder; all the 2N values of I would be identically the same, and equal 
to NZ. (For this situation the scaling described by (2) is not meaningful.) Hence D(0) = 0. 
However, when E is infinitesimally away from 0, even though all the values o f t  would be 
very close to each other, because of the scaling, see (2). i would be more or less uniformly 
distributed in the unit line segment, and D(0) would be nearly unity. For other values of E, 
D(0) lies between 0 and 1. The interesting observation is that the fractal dimension varies 
nearly linearly with E as seen in figure 2 

The exponents r(q) versus q for three representative values of E = 0.01,0.25 and 0.49 
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Figure 5. The f (a) s p e d "  for three values of the disorder parameter. E .  (a) E = 0.01. (b) 
E = 0.25, and (c) E = 0.49. 

are depicted in figure 3. We see r(q) is well defined exhibiting a change in slope. The 
generalized Renyi dimensions ace shown in figure 4. Further for given r(q), the spectnun 
of scaling indices usually denoted by f(u) can he obtained by Legendre transformation as 
given below, 

f (u)  = uq - r(4) (54 
d a = -r(4). 

dq 

The f (u)  spectra for three typical values of 6 ace shown in figure 5. Note. the f(u) curve 
has a single hump shape and it depends on e 

In summary, we have studied the multifractal characteristics of the distribution of m 
over Sinai disorder. We have calculated the fractal dimension D(0) and found that it varies 
nearly linearly with increasing strength of disorder. We have obtained the exponents r(4) 
that describe the scaling behaviour of the partition function and lhe generalized dimensions 
D(q).  We have also presented results on the f (u )  spectrum. 
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